I MBA - I Semester Regular/ Supplementary Examinations FEBRUARY – 2024

QUANTITATIVE ANALYSIS FOR BUSINESS DECISION

Duration: 3 Hours

Max. Marks: 70

Note: 1. This question paper contains three Parts-A, Part-B and Part-C.

- Part-A contains 8 short answer questions. Answer any <u>Five</u> Questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. Part-C contains one Case Study for 10 Marks.
- 5. All parts of Question paper must be answered in one place
- BL Blooms Level

CO – Course Outcome

	FARI - A		
		BL	CO
1. a)	Illustrate the attributes of Standard Deviation.	L2	CO1
1. b)	Demonstrate the characteristics of Binomial	L2	CO3
	Distribution.		
1. c)	How to interpret the Correlation Coefficient?	L2	CO2
1. d)	How can you identify that a two-person zero-sum	L2	CO4
	game is useful in game theory?		
1. e)	Define Hypothesis and classify the different types	L2	CO5
	of hypothesis.		
1. f)	Explain the concept of Linear Programming.	L3	CO1
1. g)	Compare Type- I and Type – II Errors.	L5	CO2
1. h)	Discuss about Baye's Theorm.	L2	CO1

PART - A

PART - B

								BL	СО	Max. Marks
					<u>UNI</u>	<u>Γ – Ι</u>				
2.	a)	Illustra	ate the a	ttributes	s of Me	an, Mec	lian and	L3	CO1	5 M
		Mode	in reseat	rch.						
	b)	Find	the Co	rrelatior	n Coeff	ficient	for the	L4	CO2	5 M
		follow	ing and	interpre	t the res	ults.				
		Х	12	15	17	16	13			
		Y	125	148	187	174	142			

		OR			
3.	a)	Determine the Regression Equation to the	L3	CO1	5 M
		following data.			
		X 8 9 11 10 7			
		Y 12 15 19 17 11			
	b)	Define Kurtosis and explain the types and	L4	CO2	5 M
		importance.			
		<u>UNIT – II</u>		<u>т т т</u>	
4.	a)	Categorize the attributes of Additional and	L3	CO3	5 M
		Multiplication Theorem.		~ ~ ~ ~	
	b)	If you roll a fair dice, what is the probability	L3	CO3	5 M
		that the number you get is:			
		i) 5 ii) An odd number			
		iii) A number greater than 1			
		iv) A multiple of 4 OR			
5.		1	L3	CO3	5 M
э.	a)	A Card is taken at a random from a standard 52-card pack of playing cards. What is the	LJ	COS	3 IVI
		probability that is:			
		i) A Seven ii) A Heart			
		iii) A Red Card iv) A Red Six.			
	b)	Suppose it has been observed that, on	L3	CO3	5 M
		average, 180 cars per hour pass a specified			_
		point on a particular road in the morning rush			
		hour. Due to impending road works it is			
		estimated that congestion will occur closer to			
		the city centre if more than 5 cars pass the			
		point in any one minute. What is the			
		probability of congestion occurring?			
	1	<u>UNIT-III</u>			
6.	a)	Find is there any significant difference in the	L1	CO3	5 M
		given samples 12, 13, 17, 15, 19, 14 and 22 if			
		the population mean is estimated as 16. Use			
		the level of significance is 0.01.			
	b)		L3	CO1	5 M
		hypothesis testing.			

		OR			
7.	a)	Find there is any significant difference in the given two sets of samples by using $\alpha = 0.05$.	L4	CO2	5 M
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
		11 8 7 14 9 5 10 12 16			
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	b)		L4	CO2	5 M
	,	are 8.75 and 9.25 and the standard deviations			•
		are 1.5 and 1.75. If the sample sizes are 34			
		and 37 find is there any significant difference			
		in the given samples by using $\alpha = 0.01$.			
		<u>UNIT – IV</u>			
8.	a)	Mention the steps involved in Simplex Method.	L4	CO4	5 M
	b)		L4	CO4	5 M
		B. To manufacture one unit of A, 1.5		001	0 111
		machine hours and 2.5 labour hours are			
		required. To manufacture product B, 2.5			
		machine hours and 1.5 labour hours are			
		required. In a month, 300 machine hours and			
		240 labour hours are available. Profit per unit			
		for A is Rs. 50 and for B is Rs. 40. Formulate			
		as LPP.			
	1	OR		1 1	
9.	a)	What are the components of LPP? What is	L3	CO4	5 M
		the significance of non-negativity restriction?			
	b)	A firm makes two products P1 & P2 and has	L3	CO4	5 M
		production capacity of 18 tonnes per day. P1			
		& P2 require same production capacity. The			
		firm must supply at least 4 t of P1 & 6 t of P2			
	1	per day. Each tonne of P1 & P2 requires 60 hours of machine work each. Maximum			
	1	machine hours available are 720. Profit per			
	1	tonne for P1 is Rs.160 & P2 is Rs.240. Find			
		optimal solution by graphical method.			

		<u>UNIT – V</u>			
10.	a)	Define Hungarian Method and explain about	L3	CO4	5 M
		the steps involved in it.			
	b)	Illustrate the following concepts with	L3	CO4	5 M
		suitable examples:			
		i) Fair game			
		ii) Pure Strategy			
		iii) Saddle Point			
_	_	OR			
11.	a)	Use the Hungarian method to solve the given	L4	CO5	5 M
		assignment problem stated in the table. The			
		entries in the matrix represent each man's			
		processing time in hours.			
		1 20 15 18 20 25			
		2 18 20 12 14 15			
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
		4 17 18 21 23 20			
		5 18 18 16 19 20			
	b)	Summarize about the Pure and Mixed	L3	CO4	5 M
		strategy game.			
	•	PART –C	1		J
			л	00	Max.
		CASE STUDY	BL	CO	Marks
12.	So	lve the given transportation problem usin	g L4	CO5	10 M
		gel's approximation method.	8		

Vogel's approximation method.						
	D	estinatio	on Centr	es	Supply	
Factories	D1	D2	D3	D4	Supply	
F1	3	2	7	6	50	
F2	7	5	2	3	60	
F3	2	5	4	5	25	
Demand	60	40	20	15		